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Locatint~ the Principal Maxima of a Fourier Series 
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A numerical  me thod  for locating the principal  max ima  of a mul t i -dimensional  Fourier  series is 
described which obviates the necessi ty for comput ing the function. The under ly ing  postula te  is 
t h a t  the most  prominent  max ima  lie in those regions in which there occurs dense packing of the 
max ima  of the individual- terms of the series. The procedure has been adapted  for use wi th  I.B.M. 
equipment .  

I n t r o d u c t i o n  

The ted ium and expense of comput ing mult i -dimen- 
sional Fourier  series are famil iar  problems. I t  therefore 
seemed desirable to develop a re la t ive ly  rapid numerica l  
procedure for locating the principal  m a x i m a  of a 
Fourier  series wi thout  comput ing the funct ion at a 
prohib i t ive ly  large number  of points. This is partic- 
u la r ly  worthwhile for a Fourier  series which contains 
more terms and  higher frequencies than  those usual ly  
deal t  with in crystal lographic computat ions;  as occurs, 
for example,  in the series expansion of the probabi l i ty  
d is t r ibut ion  for in tera tomic  vectors (Haup tman  & 
Karle,  1952, equat ion 58). 

The procedure to be described depends upon the 
in tu i t ive  concept t ha t  the most  prominent  m a x i m a  
of a Fourier  series occur in those regions in which the 
degree of clustering of the m a x i m a  of the indiv idual  
terms in the series is re la t ively  high. In  this way the 
smaller,  un impor t an t  m a x i m a  are au tomat ica l ly  re- 
moved from consideration. The a t t empt  to solve this 
problem by  means  of a first der ivat ive hot  only leads 
to an impract ica l  algebraic problem, but  also offers 
no means  for readi ly dis t inguishing between the 
pr incipal  m a x i m a  and the insignif icant  ones. 

B a s i c  concep t s  

In  order to develop the basic ideas, we t reat  first the 
case for one dimension and consider the two-term 
series 

S = A cos 2 : n m x + B  cos 2zcnx,  (1) 

where A and B are positive, and m and n are assumed 
to be re la t ively  pr ime positive integers. The m a x i m a  
of the te rm 

S 1 = A cos 2zemx (2) 

occur at x = u/m,  where u is any  integer, and the 
m a x i m a  of 

S 2 = B cos 2zenx (3) 

occur at x = v/n, where v is any  integer. In  accordance 
with the basic concept, it  is postulated tha t  the most 

p rominent  m a x i m u m  of (1) occurs in the region in 
which a m a x i m u m  of (2) is closest to some m a x i m u m  
of (3). Therefore, we consider the problem of minimiz-  
ing the difference 

u _ v  _ l u n - v m l  (4) 
I m m n  n 

Since u n - v m  is an integer and m and n are assumed 
to be re la t ive ly  prime, the  min imum,  non-t r ivia l  value 
of (4) is obtained by solving the d iophant ine  equat ion 

u n - v m  = ± p ,  (5)' 

where p = 1, the solution of which is well known. 
Denot ing by  ul, vl the fundamen ta l  solution (i.e. 
0 < u~/m < 1, 0 < v l /n  <_ ½) of (5) with p = l ,  the 
most p rominent  m a x i m u m  of (1) lies in the in terval  
ul /m,  vl /n,  where the difference l u l / m - v l / n  I is equal  
to the smal l  n u m b e r  1/mn. 

The next  step is to locate more accurately the point  
wi th in  the smal l  region ul /m,  v l /n  at which the maxi-  
m u m  occurs. We replace S 1 and S 2 in (1) by  the first 
two terms of their  Taylor  expansions at their  respective 
maxima,  u l / m  and vl /n;  and proceed to f ind the unique 
m a x i m u m  of the result ing parabola  for (1) by  the 
usual  method  of equat ing  the der ivat ive to zero. In  
this  way we f ind the  posit ion of the most  p rominent  
m a x i m u m  of (1) to be very  near ly  

A m u  1 + B n v  1 A m  ~ . u l / m  + B n  2 . v 1In 
x = A m ~ + B n ~  " = A m ~ + B n  2 (6) 

The last  te rm in (6) is seen to be a weighted average 
of the two m a x i m a  of (2) and (3) respect ively which 
are closest together. The nex t  most  p rominent  m a x i m a  
of (1) are obtained by  permi t t ing  p in (5) to take on 
successively the values 2,'3, 4, . . . .  

A simple numer ica l  example  will i l lustrate the 
principles involved. In  (1), let A -- 3, B = 1, m = 7 
and n =  17. Since 1 7 × 2 - 7 × 5 = - 1 ,  u 1 = 2  and 
v 1 = 5. Subst i tu t ion into (6) yields 

3 × 7 × 2 - 1 × 1 7 × 5  
x = -- 0.29128, 

3 × 7 3 ÷  1 × 17 ~ 
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while the true position of the maximum is x=0.29127. 
In  the case tha t  either of t he  coefficients in (1) is 

negative or tha t  one or both terms may  be a sine, 
a slight modification of (5) is required. Equation (5) 
is replaced by. 

(u+vh)n--(v+~2)m = ± p ,  (7) 
where 

~1 = 0 if S I = 

~h = ¼ if S 1 = 

Vl = ½ if $1 = 

A cos 2zmx, A > 0 ,  (8) 

A sin 2~mx, A > 0 ,  (9) 

A cos 2~mx, A < 0 ,  (10) 

A sin 2~mx, A < 0 ,  (11) 

and similarly for ~2- In (7), p ranges over only those 
values for which the equation is solvable in integers 
2~, V. 

The procedure just described falls natural ly into 
two steps: the determination of the approximate 
locations of the maxima and the refinement of these 
locations. In  generalizing the procedure to series 
having many terms this two-step process is main- 
rained. In carrying out the first step, only terms having 
the largest amplitudes (roughly the first 10%) need be 
used, and in the refinement procedure the entire series 
is used. 

A reference frequency is chosen (not necessarily a 
frequency occurring in a given series) which is large 
enough to give sufficient resolution for the problem 
under consideration. An increased accuracy in the 
rough computation resulting from the choice of an 
even larger frequency is generally not sufficient to 
justify the increased amount of labor which would be 
required. The reference frequency divides a unit 
interval into a corresponding number of sub-intervals, 
the one dimensional lattice. From another point of 
view, the above procedure described for two terms is 
a method for determining those maxima of either term 
which lie closest to the lattice points determined by 
the frequency of the other term. Now, we use this 
method to determine those maxima of each term in the 
Fourier series which lie closest to the lattice points 
determined by the reference frequency. The most 
prominent maxima of the Fourier series are expected 
to be near those lattice points about which there 
occurs the densest clustering of the maxima from the 
individual terms. 

Each lattice point in a region of clustering is given 
an approximate weight based on the contributions 
from the maxima of the individual terms. As suggested 
by (6), the contribution of each term to the total  
weight is proportional to its amplitude and the square 
of its frequency. In addition, a correction should be 
applied, which measures the degree of cluster in a 
laarticular region. At this stage this is roughly ac- 
complished by including a factor which depends upon 
the distance from a maximum of an individual term 
to the lattice point. Later in the procedure this 
weighting can be improved by replacing the lattice 

point by the refined position of the maximum of the 
Fourier series. 

Although the discussion thus far has been concerned 
with the one-dimensional problem, the generalization 
to higher dimensions is not difficult. In  two dimensions 
we consider first the series consisting of three terms. 
Thb positions of the maxima of each term consist of 
parallel straight lines rather than isolated points. 
Thus we obtain three families of straight lines and the 
most prominent maximum of the Series lies in the 
triangle of smallest area so determined (Fig. 1). 

In three dimensions the positions of the maxima of 
each term of the series consist of parallel planes. The 

1 

0 1 

Fig.  1. Loca t ing  the  pr incipal  m a x i m u m  for the  t h ree - t e rm 
series 

A cos 2r~(x-~4y)~-B cos 2 g ( 2 x - - y ) - ~ C  cos 2g(3x-~2y)  , 
A , B , C  > O. 

The biggest  m a x i m u m  occurs  in the  region R def ined b y  the  
smal les t  tr iangle.  The  ref ined pos i t ion  of the  m a x i m u m  is 
found  f rom (37). 

most prominent maximum of the series containing four 
terms lies in the smallest tetrahedron determined by  
planes corresponding to these terms. For the general 
series a three-dimensional reference lattice is used, and 
the numerical procedure to be described is a simple 
generalization of the one outlined for one dimension, 

Procedure 

To find the prominent maxima of 

S = 2." Chkz COS 2:r (hx + ky + lz) 
h, k, l 

+ ~  C~kz sin 2n(hx+ky+lz) (12) 
h, k, l 

we first select three triples hi, It,, l~, i -- 1, 2, 3 which 
determine the reference mesh or lattice and which may  
or may  not occur among the triples appearing in (12). 
The numbers Chk~, C~k~ are arranged in decreasing 
numerical order 

C4 _ C5 _> Cs >_ . . .  (13) 

and for each i = 1, 2, 3, . . .  

Ci=[C~kizi[ or lClik~l. (14) 

Approximately the first 10% of the tezms of (12), as 
ordered by (13) and (14), are retained in the preliminary 
computation. We define 
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z]i = 0 

Vi= ¼ 

Vi = ½ 

Vi = 

~ =  I~%~1 and 

if C i =  IC~k~z~l and 

if c~=  ICz~z~l and 

if C i =  IC~z~zil and 

C~,~ > 0 ,  (15) 

C'~,i~ i > 0 ,  (16) 

c~,~,i < o ,  (17) 

c~,iz~ < o,  (18) 

A i = 

ml + ~1 hi kl 

ms+#a hs ks 

ni ÷ ~i hi ki 

11 

la ' 
(19) 

(20) 

The volume of the tetrahedron defined by the four 
planes 

h~,x+k~,y+l~,z = m ~ + ~ ,  /~ = 1, 2, 3 ,  (21) 

hix +kiy+l~z = ni+~i  (22) 

is proportional to A~. In order to locate the small 
tetrahedra, we equate ZI i to a small number and 
therefore solve each of the solvable equations 

A~ -- ±¼j, j = 0, 1, 2, . . . ,  4Mi ,  (23) 
i - - 4 ,  5, 6, . . .  

in integers mF, = mi,(i , j) ,  /u = l,  2, 3, n i = ni(j),  where 
M i is the largest integer not exceeding any one of 
1¼/1123[, [¼A12i[, [¼A13il, [¼/123i[, and the solutions are 
such tha t  

hlx i  j + k l Y i / ÷  llZij -~ m 1 + 711 , (24) 

h,zxii + keyii + 12z q = m~ + ~9 , (25) 

haxii + k3Yq + lszii -- ms + ~]a, (26) 

0 < x i / <  1, 0 _ < y q <  1, 0 < z q <  1,  (27) 

so tha t  at tent ion is restricted to the unit cube. If 
C~kz = 0 for every hkl, the additional restriction 

0 <_ xij+Yij+zij <_ :~ (28) 

is desirable. Equations (24), (25) and (26) thus deter- 
mine the cartesian coordinates xij, Yij,  zi j  of the lattice 
point in the reference mesh which is a vertex of a small 
tetrahedron defined by (21) and (22). 

After expanding (19) and collecting terms without 
multiplying by a numerical factor, equation (23) re- 
duces to 

a~ +b~+c~ ÷ d w  = p ,  (29) 

where a, b, C, d are integers. Equation (29) is solvable 
in integers ~e, ~, ~, co if, and only if, p is a multiple 
of the greatest common divisor (g.c.d.) of a, b, c, d. 
In  order to simplify the computations performed on 
I.B.M. equipment we have treated only the case in 
which the g.c.d, of a, b, c, d is uni ty  and p ~ 0. The 

reference mesh can always be chosen so tha t  this 
condition is fulfilled by almost all equations (29). The 
solution to (29) is well known (Dickson, 1936, pp. 1, 2). 
In Table 1 an outline of the solution is given. 

Next we solve 

h lX+k ly+l lZ  = ~'~-711 ' I 
h~x + k~y+ lez = ~ + ~ '  / (30) 
hax + k ~  + laz = ~+~]a 

for x, y, z and set xi# y q ,  zig equal to the ~raetional 
parts of x, y, z respectively so tha t  (27) is satisfied. 
In  order to fulfill (28) ff C~kz---0 for every h, k, l, 
xij, Yij, zq are left unaltered or xij is replaced by 
1 - x q ,  Yij by 1 - y q  and zij by 1-zi j  according as (28) 
is or is not satisfied. Finally, m l = m l ( i  , j) ,  me=mg(i  , j) ,  
m a = ma(i , j )  are determined by (24), (25) and (26). 
These integers, when substi tuted into the left side of 
(23), yield a value of j for which ml, ms, m a is the 
unique solution of (23) in integers satisfying also 
(24)-(27). 

For each i and each j we write down the triples 
m l ( i , j ) + ~  h, mg(i,j)+~]~, ms(i , j )+z]3 and the corre- 
sponding weights 

Fij = Ci(hi2 + ki2 +li)~ (1- je /16M~),  

i - -  4 , 5 , 6 , . . . ,  (31) 

j = 0, 1, 2, . . . ,  4M~., 

where the three factors on the right of (31):correspond 
to the amplitude, the square of the frequency and a 
rough measure of the degree of clustering, as measured 
by the volume of the tetrahedron bounded by (21) 
and (22). We find the values of 

27 Fi# i : 4, 5, 6, . . .  (32) 

s u m m e d  over those values of Fij corresponding to 
each fixed value of the triple 

m l ( i , j ) + ~ l ,  m~(i,j)+r/2, m 3 ( i , j ) + ~ s .  (33) 

For fixed i, the triples (33) are distinct for different 
values of j but  various combinations of i and j will 
correspond to the same value of the triple ml, m~, ms. 
The values of (32) are arranged in decreasing order 
and the corresponding values of the triples are written 
d o w n :  

ml(/g)÷~]l, me(/g)÷~]e, /a(/g)÷~3, /~=1, 2, 3, . . .  , (34) 

where 

ml(/u)=ml(i~,, j~,), m~(/u)=mo(i,, j~,), ms(/~)=mz(if, , j~,) . 

For each fixed value of/~, the triple (34) when sub- 
st i tuted into (21) determines the approximate position 
of a prominent maximum (x~, y~, %) and the value of 
/~ is a rough measure of the relative magnitude of this 
maximum. 

The final step is to refine the approximate positions 
x~, y,, %, of the maxima using all the terms in the 



472 LOCATING THE PRINCIPAL MAXIMA OF A FOURIER SERIES 

Table l. Flow diagram of procedure for locating maxima 

i 
I 
h# k .  I~ 

~ p  - h v kv Iv 

hp kp p 

; . 4 ,  S, 6 . . . .  

To f ind  the g. c• d• of  a , b , c , d  use the 

Euc] idean a lgo r i t hm to f i nd  the g. c. d. 

g ( . a  n} of  a z . a and a 2 . b. 

a~ . a2q z . a~, a z . a}q z + a~,.8:3 . a~q~ . a s , 

• . . ,  an_ z = an_lqn_ 2 + an,an_ 1 - anqn_  1, 
S i m i l a r l y  f i nd  the g. c. d. h o f  g and c, 

and the g. c. d. k of  h and d. We t r e a t  only 

the case that  the g. c. d, k o f  a , b , c , d  is un i t y .  

TO solve a# ÷ bn ÷ cl; + do~ . p in in tegers  

~ , ~ , ~ , ~  f i r s t  express g as a l i n e a r  

combinat ion o f  a and b. Def ine 

r o . 0  s o . 1  

r I ,, 1 $1  • q l  

r~ . qz s2 " qzqz + 1 

r~ • qz% ÷ 1 s~ = (qzq z ÷ 1} q~ . qz 

r i  " r i - l q l  • r i -2"  Sl • s i - t  qi  + S l - z  

Then ( i f  necessary by revers ing  the 

s igns of r . _  2 and sn_ z) we ob ta in  

r , _  2 a -  sn_ z b . g. S i m i l a r l y  f ind" 
w e ~ # 

h . rn ,  2 g - Sn, .2 c and 1 . rn. 2 h - Sn. .2  d. 

Combining these equat ions y i e l d s  a 

s o l u t i o n  of  a# '  • b~'  • c l '  ÷ d¢o' = 1. ,Then l e t  

" P~', ~ " P~',  ~ " PC', o~ - p~ ' .  

I I I '  I C I - C h l k l l l  o r  C h l k l l l  

C I > Cj if i < j 

r 

M I is  the l a rges t  i n tege r  

not exceeding any ¼ A v p. 

1 . 4 , 5 , 6  . . . .  

j - 0 ,  1, 2 . . . . .  4 M  i 

o. ½. 

F i j  - C I k 2 + i , 1  

Find ~" F I j ,  i . 4, 5, 6 . . . .  

summed over those va lues o f  F I j  

corresponding to a f i xed  va lue o f  

the t r i p l e  m v ( i , j )  + ~v' v - 1, 2, ~, 

and arrange in decreasing order•  

We obta i n 

ml ( " }  ÷ nz, mz(#} * nz, m:)( . } ,  n},  . 

~ , -  1 , ' 2 ,  .3 . . . . .  

,,,._ 
r 

Solve h lx  + kzY • l zz " ~ ÷ ~z 

h2x + k2Y * l sz " ~ ÷ ~z 

h~x + k3y + l~z  . ~ • ~ 

Let x i j  . x -  [x] where [ x ]  

is the l a rges t  i n teger  not 

exceeding x, Y i j  = y - [y ] ,  z i j  " z - [ z ] .  
# 

I f  Chk 1 . 0 f o r  every h , k ; l ,  leave 

x l j ,  Y l j ,  z l j  una l te red  or  rep lace 

X l j  by i - X l j ,  Y l j  by 1 - Y l j ,  z i j b y z i j  

< f o r  >3_ according as x l j  + Y l j  ÷ z i j  - - -  
2 2 

F i n a l l y  determine m 1, m 2, m:~ by 

means o f  

h l X l j  + k l Y i j  • l z z i j  " ml • ~1 

h 2 x l j  • k2Yi j  * l z z i j  " mz • ~2 

h ) X l j  + k ) y l j  • 1 3 z i j  . m 3 • n3 

m i is  the i n tege r  nearest  to 

h ix ~ • k lY ~ . l I z -  ~t r 

For each ~ compute x , y , z  by means o f  
2 

x i~Cih I • Y E C ; h i k  i + zT C ih i l  i - $ -C lh i {m i+~  i} 
i i i 

x $" C ik lh  i y i~ClkZ ' i + . i • z~-i C | k i l  I " ~i" C i k i { m i * ~ l )  

x i ~ C i l i h l  * Y i  ~ C i l | k l  * z~- C | 1 2 i  i " ~ 'Ci  i l l  (mi .~ | }  
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series. The procedure is a generalization of the one 
described for two terms in one dimension.* 

Each term in the Fourier series determines an index 
i by means of (14). For a fixed # and each such i, 
the number mi is defined to be that  integer which is 
nearest to 

hix~, ÷ kiy~, ÷ l i%- Ui . (35) 

Consequently, the plane 

hix + ]ciY + liz : mi + Ui (36) 

is that  plane of the family (22) which passes nearest 
to the point x~, y,, zz, i.e. the maximum of 

ci { COS 2z~(hix+lciy+liz) I 
sin 2~ (hix + k~y + liz) 

(the cosine or sine is used according as Ci = ]Ch~kizi] 
or Ci--IC~kizi]) closest to x~, y~, z~ is in the plane 
(36). As in one dimension, the term 

ci { COS 2ze(hix+lc~y+liz) t 
sin 2ze(hix + kiy + l~z) 

is replaced by its Taylor expansion in the region of the 
plane (36) for each i, and the results substituted into 
(12). The unique maximum of the resulting function 
of the second degree is readily found by the standard 

* The refinement procedure may  be applied no mat te r  how 
the  approximate locations x~, yg, z~ have been obtained. 

method of partial differentiation to be the solution, 
x, y, z, of 

x.~ Cih~ + yZ, Cihi]Q ÷ z_~  Cihi l  i = . ~  Cih  i ( m  i ÷ r]i ) , 
i i i i 

i i ~ i "  , (37) 

i--- 1 ,2,3,  . . . .  

Using the solution x, y, z of (37) instead of x~, y~, z~, 
the refinement procedure may be repeated to yield a 
still better approximation to the location of the 
maximum, and the cycle may be repeated again and 
again. This iterative process ordinarily converges 
within ten cycles. The final values of the triples 
x, y, z, so obtained, as # ranges through the values 
1, 2, 3, . . . ,  are the coordinates of the most prominent 
maxima of (12), arranged approximately in decreasing 
order. 

The procedure described herein has been pro- 
grammed for I.B.M. equipment by .-Mr Peter O'Hara 
of the Computation Laboratory of the National 
Bureau of Standards. His excellent cooperation is 
deeply appreciated. 
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Application of Statist ical  Methods to the Naphthalene Structure 
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(Received 7 November 1952) 

A method for locating the principal maxima of a Fourier series was applied to a function de- 
scribing the probability distribution for interatomic vectors using the data of Abrahams, Robertson 
& White for naphthalene. A structure comparable to that found by Abrahams et al. was obtained. 
No attempt was, however, made to obtain the ultimate accuracy inherent in this method. 

Introduction 

This paper concerns the application of the statistical 
methods developed in a previous paper (Hauptman 
& Karle, 1952) in order to determine the structure of 
the carbon frame in naphthalene. The principal maxima 
of formula (58) (Hauptman & Karle, 1952) expressing 
the probability distribution for interatomic vectors, 
have been located by a method described previously 
(Hauptman & Karle, 1953). The validity of the results 

therefore constitutes a test not only of the statistical 
method, but also of the method for locating the prin- 
cipal maxima of a Fourier Series. Since the X-ray 
scattering data of Abrahams, Robertson & White 
(1949) were used, a comparison with their results is 
significant. 

T r e a t m e n t  of data 
The logarithm of equation (58) (Hauptman & Karle, 
1952) may be expressed as the Fourier series 


