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Locating the Principal Maxima of a Fourier Series

By H. HauvptmaN aND J. KARLE
U.S. Naval Research Laboratory, Washington 25, D.C., U.S. 4.

(Received 7T November 1952)

A numerical method for locating the principal maxima of a multi-dimensional Fourier series is
described which obviates the necessity for computing the function. The underlying postulate is
that the most prominent maxima lie in those regions in which there occurs dense packing of the
maxima of the individual terms of the series. The procedure has been adapted for use with I.B.M.

equipment.

Introduction

The tedium and expense of computing multi-dimen-
sional Fourier series are familiar problems. It therefore
seemed desirable to develop a relatively rapid numerical
procedure for locating the principal maxima of a
Fourier series without computing the function at a
prohibitively large number of points. This is partic-
ularly worthwhile for a Fourier series which contains
more terms and higher frequencies than those usually
dealt with in crystallographic computations; as occurs,
for example, in the series expansion of the probability
distribution for interatomic vectors (Hauptman &
Karle, 1952, equation 58).

The procedure to be described depends upon the
intuitive concept that the most prominent maxima
of a Fourier series occur in those regions in which the
degree of clustering of the maxima of the individual
terms in the series is relatively high. In this way the
smaller, unimportant maxima are automatically re-
moved from consideration. The attempt to solve this
problem by means of a first derivative not only leads
to an impractieal algebraic problem, but also offers
no means for readily distinguishing between the
principal maxima and the insignificant ones.

Basic concepts

In order to develop the basic ideas, we treat first the
case for one dimension and consider the two-term
series

S = A4 cos 2nmz+ B cos 2nnx , (1)

where A and B are positive, and m and n are assumed
to be relatively prime positive integers. The maxima
of the term

S, = A cos 2amx 2)

occur at x = u/m, where u is any integer, and the
maxima of
S, = B cos 2anx 3)

oceur at ¥ = v/n, where v is any integer. In accordance
with the basic concept, it is postulated that the most

prominent maximum of (1) occurs in the region in
which a maximum of (2) is closest to some maximum
of (3). Therefore, we consider the problem of minimiz-
ing the difference

lu v|  |un—ovm|

e B )

lm = mn

Since un—wvm is an integer and m and » are assumed
to be relatively prime, the minimum, non-trivial valae
of (4) is obtained by solving the diophantine equation

un—vm = +p, (5)

where p = 1, the solution of which is well known.
Denoting by wu,, v, the fundamental solution (i.e.
O<ufm<4i, 0<ofn<i) of (5) with p =1, the
most prominent maximum of (1) lies in the interval
uy/m, v,[n, where the difference |u,/m—wv,/n| is equal
to the small number 1/mn.

The next step is to locate more accurately the point
within the small region u,/m, v,/n at which the maxi-
mum occurs. We replace S, and S, in (1) by the first
two terms of their Taylor expansions at their respective
maxima, u,/m and v,/n; and proceed to find the unique
maximum of the resulting parabola for (1) by the
usual method of equating the derivative to zero. In
this way we find the position of the most prominent
maximum of (1) to be very nearly

_ Amu,+Bnv,  Am?.u,[/m+ Bn?.v,[n 6
~ Am?+Bn? Am?2+ Bn? - ®

The last term in (6) is seen to be a weighted average
of the two maxima of (2) and (3) respectively which
are closest together. The next most prominent maxima
of (1) are obtained by permitting p in (5) to take on
successively the values 2,3, 4, ....

A simple numerical example will illustrate the
principles involved. In (1), let A =3, B=1, m =7
and n = 17. Since 17x2—-7x5= -1, %, =2 and
v; = 5. Substitution into (6) yields

_3><7x2—1><17><5
T 3x72+1x172

= (0-29128,
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while the true position of the maximum is x=0-29127.

In the case that either of the coefficients in (1) is
negative or that one or both terms may be a sine,
a slight modification of (5) is required. Equation (5)
is replaced by,

(wtn)n—(v+m)m = +p, 7

where
ny=0 if 8 =A4cos2amz, 4 >0, (8)
m=% if 8 =Asin2mmz, 4 >0, 9)
=% if 8 =Acos2mmz, 4 <0, (10)
m=4% if 8 =4sin2wmz, 4 <0, (11)

and similarly for #,. In (7), p ranges over only those
values for which the equation is solvable in integers
u, v.

The procedure just described falls naturally into
two steps: the determination of the approximate
locations of the maxima and the refinement of these
locations. In generalizing the procedure to series
having many terms this two-step process is main-
tained. In carrying out the first step, only terms having
the largest amplitudes (roughly the first 109%) need be
used, and in the refinement procedure the entire series
is used.

A reference frequency is chosen (not necessarily a
frequency occurring in a given series) which is large
enough to give sufficient resolution for the problem
under consideration. An increased accuracy in the
rough computation resulting from the choice of an
even larger frequency is generally not sufficient to
justify the increased amount of labor which would be
required. The reference frequency divides a unit
interval into a corresponding number of sub-intervals,
the one dimensional lattice. From another point of
view, the above procedure described for two terms is
a method for determining those maxima, of either term
which lie closest to the lattice points determined by
the frequency of the other term. Now, we use this
method to determine those maxima of each term in the
Fourier series which lie closest to the lattice points
determined by the reference frequency. The most
prominent maxima of the Fourier series are expected
to be near those lattice points about which there
occurs the densest clustering of the maxima from the
individual terms.

Each lattice point in a region of clustering is given
an approximate weight based on the contributions
from the maxima of the individual terms. As suggested
by (6), the contribution of each term to the total
weight is proportional to its amplitude and the square
of its frequency. In addition, a correction should be
applied- which measures the degree of cluster in a
particular region. At this stage this is roughly ac-
complished by including a factor which depends upon
the distance from a maximum of an individual term
to the lattice point. Later in the procedure this
weighting can be improved by replacing the lattice
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point by the refined position of the maximum of the
Fourier series.

Although the discussion thus far has been concerned
with the one-dimensional problem, the generalization
to higher dimensions is not difficult. In two dimensions
we consider first the series consisting of three terms.
The positions of the maxima of each term consist of
parallel straight lines rather than isolated points.
Thus we obtain three families of straight lines and the
most prominent maximum of the series lies in the
triangle of smallest area so determined (Fig. 1).

In three dimensions the positions of the maxima of
each term of the series consist of parallel planes. The

1

0 x 1

Fig. 1. Locating the principal maximum for the three-term
series

A cos 2n(2+4y)+ B cos 2n(2z—y)+C cos 2n(8z+2y) ,
A,B,C>0.
The biggest maximum occurs in the region R defined by the

smallest triangle. The refined position of the maximum is
found from (37).

most prominent maximum of the series containing four
terms lies in the smallest tetrahedron determined by
planes corresponding to these terms. For the general
series a three-dimensional reference lattice is used, and
the numerical procedure to be described is a simple
generalization of the one outlined for one dimension.

Procedure

To find the prominent maxima of
8§ = X Oy cos 2n(hx+ky+1z)
) Ks r.
mo +3 Clysin 2n(hz+hy+lz)  (12)
Rkl

we first select three triples &, k,, 7;, 7 = 1, 2, 3 which
determine the reference mesh or lattice and which may
or may not occur among the triples appearing in (12).

The numbers C,, O are arranged in decreasing
numerical order

C,>2Cs=>0Ce> ... (13)
and for each 2 =1,2,3, ...
Ci=|Chry| or |Chpyl. (14)

Approximately the first 109, of the terms of (12), as
ordered by (13) and (14), are retained in the preliminary
computation. We define
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ni=0 i C;=|Chsl and Chey>0, (15)
M=% i Ci=|Chagl and Chgg >0, (16)
=% if Cp=|Chpyl and Chpy, <0, (17)
=% if Ci=|Chugl and Chuy <0, (18)

m+n, ko okl

mz+7) h k l
A, = 3 2 2 2 2 , 19
! my+1ns ks ky U (19)
n+n; ke ko
k, k, 1,
Ape=1h, k1 (20)
hy ky 1,

The volume of the tetrahedron defined by the four
planes
hax+ky+lz=m+n, n=1213, (21)

hax+ky+lz = ni+n, (22)

is proportional to 4%. In order to locate the small
tetrahedra, we equate 4; to a small number and
therefore solve each of the solvable equations

A4; = +3}7, j=0,1,2,...,4M,,

1=4,56,...

(23)

in integers m, = m,(i, j), u = 1, 2, 3, n; = n,(j), where
M, is the largest integer not exceeding any one of
134 103l, [2412:], [3413i], (425, and the solutions are
such that

hozsi+keyysj+ iz = my+my (24)
hoit koY +lyzi; = my+1, (25)
by + ksyijt+lszyy = Mg+, (26)
O<z;<l1, O0<y;<1, O0<z;<l1, (27)

'so that attention is restricted to the unit cube. If
Ci = 0 for every hkl, the additional restriction

0 <zytyst+z; <3 (28)

is desirable. Equations (24), (25) and (26) thus deter-
mine the cartesian coordinates x;;, y;;, z; of the lattice
point in the reference mesh which is a vertex of a small
tetrahedron defined by (21) and (22).

After expanding (19) and collecting terms without
multiplying by a numerical factor, equation (23) re-
duces to

aé+bn+cl+dw =p, (29)
where a, b, ¢, d are integers. Equation (29) is solvable
in integers &, 7, {, w if, and only if, p is a multiple
of the greatest common divisor (g.c.d.) of a, b, ¢, d.
In order to simplify the computations performed on
I.B.M. equipment we have treated only the case in
which the g.c.d. of a, b, ¢, d is unity and p # 0. The
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reference mesh can always be chosen so that this
condition is fulfilled by almost all equations (29). The
solution to (29) is well known (Dickson, 1936, pp.1, 2).
In Table 1 an outline of the solution is given.

Next we solve

hx+ky+lz = E+ny,
hot+kgy+loz = N+, ,
how+legy +lz = -+,

(30)

for »,y,z and set z; y;;, 2; equal to the fractional
parts of x, y, z respectively so that (27) is satisfied.
In order to fulfill (28) if C}; = 0 for every h, k, 1,
Ty, Yijp 2 are left unaltered or w; is replaced by
-z, y; by 1-y; and z; by 1—z;; according as (28)
is or is not satisfied. Finally, m;=m,(¢, j), my=my(¢, j),
mg = my(t, j) are determined by (24), (25) and (26).
These integers, when substituted into the left side of
(23), yield a value of j for which m,, m,, m; is the
unique solution of (23) in integers satisfying also
(24)-(27).

For each 7 and each j we write down the triples
my(%, j)+171, My(i, j)+75, ma(2,5)+; and the corre-
sponding weights

Fy = Ci(hi+k;+1) (1—52/16M7) ,
1=4,5,6,...,
j=0,1,2,...,4M,

31)

where the three factors on the right of (31) correspond
to the amplitude, the square of the frequency and a
rough measure of the degree of clustering, as measured
by the volume of the tetrahedron bounded by (21)
and (22). We find the values of

SF,;, i—4,56,... (32)

-summed over those values of F;; corresponding to

each fixed value of the triple

my(%, 3)+ 11, ML, J) 4779, m3(3, §)+75 . (33)

For fixed ¢, the triples (33) are distinct for different
values of j but various combinations of ¢ and j will
correspond to the same value of the triple m,, m,, m,.
The values of (32) are arranged in decreasing order
and the corresponding values of the triples are written
down:

m1(/4)+771; mz(/‘)""]e, ma(ﬂ)+7]3a ,u=1’ 2: 3: o

where

» (34)

ml(:u) =m1(iw jy)’ mz(/"):mz(i/u jy)’ ms(‘u)=m3(im j”) .

For each fixed value of u, the triple (34) when sub-
stituted into (21) determines the approximate position
of a prominent maximum (z,, y,, z,) and the value of
4 is a rough measure of the relative magnitude of this
maximum.

The final step is to refine the approximate positions
Z,, Yu» 2y Of the maxima using all the terms in the
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Table 1. Flow diagram of procedure for locating maxima

c .|c or' c!
i hlkl‘l hlkl‘l

C,2¢C. ific<]j
Y
he ku 1u M, is the largest integer
1
8, " h, k, 1, not exceeding any 1+ L
hp kp 1, - 14,5 6, ...
i=0,1,2, CLAM Y
Bi23, 823, B3, Oo3i L1 !
i x4,5 6, ... nI-O,E.?or%.
Y Y

To find the g. c. d. of a,b,c,d use the

Euclidean algorithm to find the g. c. d

glsa,) of a, waand a, =« b.

2, =23,Q, +3;, 8, =23,0, +2,,.2, =23,q, +3,,
©r Bng * ¥ yQnay * 3080 =380

Similarly find the g. c. d. h of g and ¢,

k of h and d.

and the g. c. d. We treat only

the case that the g. ¢. d. k of a,b,c,d is unity.

.2
Fij = Cy (n‘.k‘u)(-_J_;
Find $F;;, i =4, 5,6 N

summed over those values of Fy;
corresponding to a fixed value of

the triplem (i,j) + »,, »=1,2, 3,

and arrange in decreasing order.
We obtain

M) ¢ apmy(a) + oy my(u)e ng,

w=1,2,3 .. ..

To solve ag + by + g + dw = p in integers
&n L first express g as a linear
combination of a and b. Define

b =0 Sg =1

r,=1 S, =Q,

r,=q, Sz'qxqz’l

Fy =Q,0; + 1 sy = (9,9, +1) a5 +q,
Fi=Mieg85 ¢ Tiey Si ® 8-y Ay + S,

Then (if necessary by reversing the

signs of r_,and s _ ) we obtain

Mz 8= Sp; b= g. Similarly find

howr! niey 97 s"',_z cand 1 rn._2 h- sn.'_,2 d.
Combining these equations yields a

solution of ag’ + by’ +cg’ +dw’ = 1. Then let.

§ = pfl' n = Dnl' { = DLI. w = pw'-

Solve hyx o kyy o 1.2 a4 g,
hx v kyy + Tzz.,,.,,z
hyx o kyy + 1,2 2 g 4y

Let ‘xlj a X = [x] where [x]

is the largest integer not

exceeding x, Yij= Y- v}, z;5 = z-[z2].

If Coty =

Xip Yip Zyj unaltered or replace

0 for every h,k,1, leave

Y

X3 byl-x‘j, Yi; byl—yij, Zijby zy;

i
according as x;. + y;. + Z;; <2or >3,
i j =3 >

Finally determine m , m

20 m; by

means of
hoxpjo Kgg e NiZige My
hpxpy o kyije 125 = my e
hoxig e kyig e TiZig e My ey

Y <

m; is the integer nearest to

hix“.k‘y“»liz“-m fal

For each . compute x,y,z by means of
x};cihf .y}:Chk e ZE Oyl L T Chyimiem)
x 2k, .yzCk v z:Ckl,-gCik

1
xZClh,oyZCﬂk + zzCl

i{Mieny)

- ‘?Cili(mi’”i)
i
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series. The procedure is a generalization of the one
described for two terms in one dimension.*

Each term in the Fourier series determines an index
i by means of (14). For a fixed x4 and each such 7,
the number m; is defined to be that integer which is
nearest to

hix”+k‘iyﬂ+lizﬂ—ni . (35)
Consequently, the plane
hix‘i' k,,’y'i‘l,,’z = mi+7]i (36)

is that plane of the family (22) which passes nearest
to the point z,,y,, z,, i.e. the maximum of

{ cos 2n (b +ky+12) }
¢ sin 2.7Z (h,{x + kly + l,{z)

(the cosine or sine is used according as C; = |Cp.
or C; = |Chyyl) closest to xz,,y,, 2, is in the plane
(36). As in one dimension, the term

{ cos 2m(h;x +ky +1;2) }

‘| sin 2n(hz+ky+12)

is replaced by its Taylor expansion in the region of the
plane (36) for each 7, and the results substituted into

(12). The unique maximum of the resulting function
of the second degree is readily found by the standard

* The refinement procedure may be applied no matter how
the approximate locations zy, y,, 2, have been obtained.
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method of partial differentiation to be the solution,
z, ¥, z, of :

1 X O +y2 Cihike;+2.3 Chyl; = 3 Cihy(mi+1;)
xZ Cikishi+ yz Otz 2: Cikids = 2 Ciky(ms+75) |
xi‘ Cilihi+yé' Ciliki+z$,' Clt = 21,‘ Cili(m; + ;) ,
isL28.... 1

(37)

Using the solution z, y, z of (37) instead of z,, y,, 2,,
the refinement procedure may be repeated to yield a
still better approximation to the location of the
maximum, and the cycle may be repeated again and
again. This iterative process ordinarily converges
within ten cycles. The final values of the triples
z, Y, 2, so obtained, as u ranges through the values
1,2,3, ..., are the coordinates of the most prominent
maxima of (12), arranged approximately in decreasing
order.

The procedure described herein has been pro-
grammed for I.B.M. equipment by Mr Peter O’Hara
of the Computation Laboratory of the National
Bureau of Standards. His excellent cooperation is
deeply appreciated.
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Application of Statistical Methods to the Naphthalene Structure
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A method for loeating the principal maxima of a Fourier series was applied to a function de-
scribing the probability distribution for interatomic vectors using the data of Abrahams, Robertson
& White for naphthalene. A structure comparable to that found by Abrahams et al. was obtained.
No attempt was, however, made to obtain the ultimate accuracy inherent in this method.

Introduction

This paper concerns the application of the statistical
methods developed in a previous paper (Hauptman
& Karle, 1952) in order to determine the structure of
the carbon frame in naphthalene. The principal maxima
of formula (58) (Hauptman & Karle, 1952) expressing
the probability distribution for interatomic vectors,
have been located by a method described previously
(Hauptman & Karle, 1953). The validity of the results

therefore constitutes a test not only of the statistical
method, but also of the method for locating the prin-
cipal maxima of a Fourier Series. Since the X-ray
scattering data of Abrahams, Robertson & White
(1949) were used, a comparison with their results is
significant.
Treatment of data

The logarithm of equation (58) (Hauptman & Karle,
1952) may be expressed as the Fourier series



